Trading Variance Reduction with Unbiasedness: The Regularized Subspace Information Criterion for Robust Model Selection in Kernel Regression
نویسندگان
چکیده
A well-known result by Stein (1956) shows that in particular situations, biased estimators can yield better parameter estimates than their generally preferred unbiased counterparts. This letter follows the same spirit, as we will stabilize the unbiased generalization error estimates by regularization and finally obtain more robust model selection criteria for learning. We trade a small bias against a larger variance reduction, which has the beneficial effect of being more precise on a single training set. We focus on the subspace information criterion (SIC), which is an unbiased estimator of the expected generalization error measured by the reproducing kernel Hilbert space norm. SIC can be applied to the kernel regression, and it was shown in earlier experiments that a small regularization of SIC has a stabilization effect. However, it remained open how to appropriately determine the degree of regularization in SIC. In this article, we derive an unbiased estimator of the expected squared error, between SIC and the expected generalization error and propose determining the degree of regularization of SIC such that the estimator of the expected squared error is minimized. Computer simulations with artificial and real data sets illustrate that the proposed method works effectively for improving the precision of SIC, especially in the high-noise-level cases. We furthermore compare the proposed method to the original SIC, the cross-validation, and an empirical Bayesian method in ridge parameter selection, with good results.
منابع مشابه
Kernel-Based Information Criterion
This paper introduces Kernel-based Information Criterion (KIC) for model selection in regression analysis. The kernel-based complexity measure in KIC efficiently computes the interdependency between parameters of the model using a novel variable-wise variance and yields selection of better, more robust regressors. Experimental results show superior performance on both simulated and real data se...
متن کاملRegularizing generalization error estimators: a novel approach to robust model selection
A well-known result by Stein shows that regularized estimators with small bias often yield better estimates than unbiased estimators. In this paper, we adapt this spirit to model selection, and propose regularizing unbiased generalization error estimators for stabilization. We trade a small bias in a model selection criterion against a larger variance reduction which has the beneficial effect o...
متن کاملSubspace Information Criterion for Infinite Dimensional Hypothesis Spaces
A central problem in learning is to select an appropriate model. This is typically done by estimating the unknown generalization errors of a set of models to be selected from and by then choosing the model with minimal generalization error estimate. In this article, we discuss the problem of model selection and generalization error estimation in the context of kernel regression models, e.g., ke...
متن کاملA robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملSemi-supervised Laplacian Regularization of Kernel Canonical Correlation Analysis
Kernel canonical correlation analysis (KCCA) is a dimensionality reduction technique for paired data. By finding directions that maximize correlation, KCCA learns representations that are more closely tied to the underlying semantics of the data rather than noise. However, meaningful directions are not only those that have high correlation to another modality, but also those that capture the ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2004